PAETE.ORG FORUMS
Paetenians Home on the Net

HOME | ABOUT PAETE | USAP PAETE MUNISIPYO  | MEMBERS ONLY  | PICTORIAL PAETE | SINING PAETE  | LINKS  |

FORUM GUIDELINES
please read before posting

USAP PAETE Forum Index USAP PAETE
Discussion Forums for the people of Paete, Laguna, Philippines
 
 FAQFAQ   SearchSearch    UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

(Anatomy) Vision: Nature Inspires Design of New Eyes (See)
Goto page Previous  1, 2
 
Post new topic   Reply to topic   printer-friendly view    USAP PAETE Forum Index -> Science Lessons Forum
View previous topic :: View next topic  
Author Message
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Tue Jul 31, 2007 11:23 am    Post subject: Fish eyes could hold clue to repairing damaged retinas in hu Reply with quote

Wellcome Trust
31 July 2007

Fish eyes could hold clue to repairing damaged retinas in humans

A special type of cell found in the eye has been found to be very important in regenerating the retina in zebrafish and restoring vision even after extensive damage. Now, a UK team of scientists believe they may be able to use these cells – known as Müller glial cells – to regenerate damaged retina in humans, according to a study published this month in the journal Stem Cells.

Retinal damage is responsible for the majority of cases of blindness. Diseases damaging the retina including macular degeneration, glaucoma and diabetes are responsible for three quarters of registered blindness in the UK(1).

Researchers at the UCL Institute of Ophthalmology and Moorfields Eye Hospital have studied these Müller glial cells in the eyes of people from 18 months to 91 years of age. In research funded by the Wellcome Trust, the Medical Research Council and the Helen Hamlyn Trust, the team showed that a population of these cells have stem cell properties and are able to develop into a range of different retinal cells. The researchers were able to develop the cells in vitro into all the types of neurons found in the retina.

When tested in rat models with diseased retinas, the cells migrated into the retina and took on the characteristics of the surrounding neurons. The researchers are now looking at developing this approach for use in the human eye. In addition to growing the cells in the lab and transplanting them back into the eye, the researchers are looking at ways to stimulate growth and persuading the eye to repair itself using its own cells.

"Müller cells with stem cell properties could potentially restore sight to someone who is losing or has lost their sight due to diseased or damaged retina," says Dr Astrid Limb, who led the study. "Our findings have enormous potential.”

"It may be possible to store the cells in a cell bank and transplant them into the eye or to use cells from a person's own eye."

Using their own cells rather than a donor's has the advantage that their immune system is less likely to reject the treatment.

Although Müller glial cells are present in the human eye, it is not clear whether they already automatically repair the retina in some people but not in others. It is possible that internal mechanisms exist in the normal adult retina that prevent these cells from dividing and replicating.

"Our next step is to identify which factor is responsible for blocking the regeneration," says Dr Limb. "Once we know how this mechanism works, we will be much closer to developing a treatment."

The UCL researchers hope that the research may lead to a treatment within five to ten years, for cells isolated from a person's own eye. However, the need to overcome the immune response for transplantation of a donor's cells means that this second approach would take longer.

Professor Peng T Khaw, Director of the new National Institute for Health Biomedical Research Centre at Moorfields and the UCL Institute of Ophthalmology commented: “We urgently need new treatments that give us the hope of restoring vision in people who have lost sight. This is one of the interesting treatments we hope to be developing through to benefit patients in the next few years at the new Centre."
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Thu Sep 13, 2007 5:22 pm    Post subject: MIT IDs binocular vision gene Reply with quote

MIT IDs binocular vision gene
Research could lead to treatments for some visual disorders
Deborah Halber, News Office Correspondent
September 13, 2007


In work that could lead to new treatments for sensory disorders in which people experience the strange phenomena of seeing better with one eye covered, MIT researchers report that they have identified the gene responsible for binocular vision.

Unlike horses and eagles, whose eyes on the sides of their heads provide two different scenes, humans see a single, in-depth view. Now researchers from the Picower Institute for Learning and Memory at MIT have identified the gene responsible for melding images from two eyes into one useful picture in the brain.

The work, which appeared in the Sept. 4 issue of the Public Library of Science (PLoS) Biology and in the journal Cerebral Cortex, shows that a novel gene is necessary for binocular vision.

"There are other instances in the brain where two different inputs have to be properly aligned and matched--such as auditory and visual projections to the midbrain that enable us to orient to sound," said lead author Mriganka Sur, Sherman Fairchild Professor of Neuroscience at the Picower Institute and head of the Department of Brain and Cognitive Sciences at MIT. "This is the first study to pinpoint a gene with this kind of job."

Two points of view
Binocular vision allows us to perceive depth and carry out detailed visual processing. The images projected by each eye are aligned and matched up in brain regions called the visual thalamus and cortex.

The MIT researchers discovered that the genes Ten_m3 and Bcl6 have a key role in the early development of brain pathways for vision and touch. Ten_m3 appears to be critical for the brain to make sense of the two disparate images from each eye.

In mice that had the Ten_m3 gene knocked out, projections from their two eyes were mismatched in their brains. Because each eye's projection suppresses the other, the mice were blind, even though their eyes worked normally.

Remarkably, the researchers found that when the output of one eye was blocked at a molecular level, the knockout mice could see again. With one eye's conflicting input shut down, the other eye was able to function, though only with monocular vision.

"This is an amazing instance of 'gain of function' that proves immediately that the gene is directly responsible for creating matched projections from the two eyes," Sur said.

Human disorders in which the Ten_m family of genes is affected are often accompanied by visual deficits. "There are reports of human visual conditions in which simply closing one eye allows a person to see much better," Sur said. "We believe that genes such as Ten_m3 are at the heart of these disorders."

Co-authors include Catherine A. Learney, former MIT postdoctoral associate now at the University of Sydney; Atomu Sawatari, Kelly A. Glendining, Sam Merlin, Paul Lattouf and Natasha Demel of the University of Sydney; MIT affiliates Gabriel Kreiman, Kuan H. Wang and Ning-Dong Kang; Reinhard Fassler and Xiaohong Zhou of the Max Planck Institute for Biochemistry in Germany; and Susumu Tonegawa, Picower Professor of Biology and Neuroscience at MIT.

This work was supported by the National Institutes of Health, the Simons Foundation and Australia's National Health and Medical Research Council.
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Thu Oct 18, 2007 11:48 am    Post subject: Origin of Vision Discovered Reply with quote

Origin of Vision Discovered
By Andrea Thompson, LiveScience Staff Writer

posted: 18 October 2007 08:21 am ET

You are reading these words right now because 600 million years ago, an aquatic animal called a Hydra developed light-receptive genes—the origin of animal vision.

It wasn't exactly 20-20 vision back then though.

Hydras, a genus of freshwater animals that are kin to corals and jellyfish, measure only a few millimeters in diameter and have been around for hundreds of millions of years.

For the full article:

http://www.livescience.com/ani.....igins.html
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Fri Nov 09, 2007 2:51 pm    Post subject: The Physics of Fading Eyesight Revealed Reply with quote

The Physics of Fading Eyesight Revealed
By LiveScience Staff

posted: 09 November 2007 01:41 pm ET

A molecular dance of sorts between two proteins in the eye lens can create either perfect vision or cloudy cataracts.

By applying physics and biology to the complexities of vision, scientists discovered even a slight change in the interaction between proteins that make up the lens of the eye can lead to a protein clumping and in turn cataract formation, the world's leading cause of blindness.

For the full article:

http://www.livescience.com/hea.....sight.html
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Mon Nov 19, 2007 3:09 pm    Post subject: How Do We Make Sense of What We See? Reply with quote

How Do We Make Sense of What We See?
19 November 2007
Johns Hopkins University

Johns Hopkins researchers identify how brains
rationalize ambiguous visual data

M.C. Escher's ambiguous drawings transfix us: Are those black birds flying against a white sky or white birds soaring out of a black sky?


Lines in Escher's drawings can seem to be part of either of two different shapes. How does our brain decide which of those shapes to "see?" In a situation where the visual information provided is ambiguous — whether we are looking at Escher's art or looking at, say, a forest — how do our brains settle on just one interpretation?

For the full article:

http://www.jhu.edu/news/home07.....heydt.html
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Tue May 27, 2008 1:03 pm    Post subject: The Colorful World of Synesthesia Reply with quote

The Colorful World of Synesthesia
By Susan Gaidos
May 22nd, 2008
Why some people hear colors or taste sounds

The number “6” is a bright shade of pink. Listening to a cello smells like chocolate. And eating a slice of pizza creates a tickling sensation on the back of your neck.

For the full article:

http://sciencenews.org/view/fe.....ynesthesia
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic   printer-friendly view    USAP PAETE Forum Index -> Science Lessons Forum All times are GMT - 5 Hours
Goto page Previous  1, 2
Page 2 of 2

 
Jump to:  
You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group