PAETE.ORG FORUMS
Paetenians Home on the Net

HOME | ABOUT PAETE | USAP PAETE MUNISIPYO  | MEMBERS ONLY  | PICTORIAL PAETE | SINING PAETE  | LINKS  |

FORUM GUIDELINES
please read before posting

USAP PAETE Forum Index USAP PAETE
Discussion Forums for the people of Paete, Laguna, Philippines
 
 FAQFAQ   SearchSearch    UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

(Bio) Fungi and the Nitrogen Cycle

 
Post new topic   Reply to topic   printer-friendly view    USAP PAETE Forum Index -> Science Lessons Forum
View previous topic :: View next topic  
Author Message
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Wed May 10, 2006 9:26 am    Post subject: (Bio) Fungi and the Nitrogen Cycle Reply with quote






New Method Confirms Importance of Fungi in Arctic Nitrogen Cycle
Technique Could be Applied to All Nitrogen-Poor Ecosystems


Marine Biological Laboratory
9 May 2006

WOODS HOLE, MA—A new method to calculate the transfer of nitrogen from Arctic mushrooms to plants is shedding light on how fungi living symbiotically on plant roots transfer vital nutrients to their hosts. The analytical technique, developed by John E. Hobbie, MBL Distinguished Scientist and co-director of the laboratory’s Ecosystems Center and his son, Erik A. Hobbie of the University of New Hampshire, may be applied to nearly all conifers, oaks, beeches, birch and shrubs such as blueberry and cranberry—all nitrogen-poor ecosystems—and will be an important tool for future studies of plant nitrogen supply.


Cortinarius favrei grows in the midst of dwarf Betula and Salix, Vaccinium, and Eriophorum in the Alaskan tundra. At the Arctic LTER site, isotopic measurements indicate that mycorrhizal fungi function similar to this species contribute 60-90% of their plant's nitrogen.


It has long been known when soil nitrogen is in short supply, mycorrhizal fungi (those living symbiotically on the roots of plants) transfer nutrients to their host plants in exchange for plant sugars derived from photosynthesis, but the rates of transfer have never been quantified in the field. John and Erik Hobbie’s study, published in the April 2006 issue of the journal Ecology, quantifies the role
of mycorrhizal fungi in nitrogen cycling for the first time through measurements of the natural abundance of nitrogen isotopes in soils, mushrooms and plants. The researchers tested their technique using data from the Arctic LTER (Long Term Ecological Research) site near Toolik Lake, Alaska, in the northern foothills of the Brooks Range.

Previous research has found that when mycorrhizal fungi in the soil take up nitrogen from the soil and transfer it to small trees and shrubs, the heavy nitrogen isotope, nitrogen-15, is reduced in abundance in the plants and enriched in the fungi. Using a mass balance approach, an accounting of material entering and leaving a system, the researchers quantified the transfer of nitrogen and found that 61-86% of the nitrogen in plants at the site entered through fungal symbionts,

“Previous studies at this Arctic site have found a large range of nitrogen isotope content in plants and attributed the range to plants tapping into several different sources of nitrogen in the soil,” says John Hobbie. “Our study indicates that the differences can be attributed mainly to the presence or absence of symbiotic mycorrhizal fungi.”

The researcher’s new technique is shedding light not only on the nitrogen cycle in arctic tundra ecosystems, but can be applied to other nitrogen-poor ecosystems. “In the future, studies of plant nitrogen supply in all nitrogen-poor ecosystems must include these important transfers between plants and fungi,” says Hobbie.

—###—


The MBL is an international, independent, nonprofit institution dedicated to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Western Hemisphere. For more information, visit www.mbl.edu.

The research of the MBL's Ecosystems Center, which was established at the MBL in 1975, is focused on the study of natural ecosystems. Among the key environmental issues being addressed are: the ecological consequences of global climate change; tropical deforestation and its effects on greenhouse gas fluxes; nitrogen saturation of mid-latitude forests; effects of acid rain on North American lakes; and pollution and habitat destruction in coastal ecosystems of the United States.

*************************************************************

Questions to explore further this topic:

What are fungi?

http://www.ucmp.berkeley.edu/fungi/fungi.html
http://www.perspective.com/nature/fungi/
http://tolweb.org/Fungi
http://www.emc.maricopa.edu/fa.....ity_4.html
http://www.bioimages.org.uk/HTML/T74.HTM
http://users.rcn.com/jkimball......Fungi.html
http://en.wikipedia.org/wiki/Fungi
http://biotech.icmb.utexas.edu.....fungi.html

Fungi: A slide presentation

http://www.uwlax.edu/biology/v.....sld001.htm

Classification of Fungi

http://www.sidwell.edu/us/scie.....rya/Fungi/

Microscopic Fungi

http://www.microbe.org/microbes/fungi1.asp

Pathogenic Fungi

http://www-micro.msb.le.ac.uk/MBChB/6a.html
http://www.kcom.edu/faculty/ch...../Fungi.htm

Images of mushrooms

http://www.fungiphoto.com/
http://www.collectivesource.com/fungi/
http://www.in2.dk/fungi/fungifloat.htm

Edible and Poisonous Mushrooms

http://mdc.mo.gov/nathis/mushrooms/mushroom/
http://www.nifg.org.uk/edible_fungi.htm

Edible
http://mdc.mo.gov/nathis/mushr.....edible.htm

Poisonous
http://mdc.mo.gov/nathis/mushr.....sonous.htm
http://www.ces.ncsu.edu/depts/.....pin004.htm
http://en.wikipedia.org/wiki/Mushroom_poisoning
http://www.botany.hawaii.edu/f.....Lect19.htm
http://www.naturallist.com/fungipoi.htm

Teaching the Fungal Tree of Life

http://www.clarku.edu/faculty/.....gress.html

An online textbook on moulds

http://www.botany.utoronto.ca/.....oulds.html

Fungi and indoor air quality

http://www.dhs.ca.gov/ehib/ehi.....ndoor.html

Rainforest Fungi

http://www.sciencenetlinks.com.....m?DocID=40
http://rainforest-australia.com/fungi.htm

*************************************************************

What are nature's cycles?

http://www.owc.org.mn/econet/html/cycle.htm
http://www.marietta.edu/~biol/102/ecosystem.html

What is the nitrogen cycle?

http://www.physicalgeography.n.....ls/9s.html
http://www.backyardnature.net/econitro.htm
http://www.visionlearning.com/.....php?mid=98

What are Mycorrhizas?

http://helios.bto.ed.ac.uk/bto.....ycorrh.htm
http://www.ffp.csiro.au/resear.....intro.html
http://www.treesforlife.org.uk.....hizas.html

What are mycorrhizal fungi?

http://commtechlab.msu.edu/sit.....m0188.html
http://commtechlab.msu.edu/sit.....m0185.html
http://www.planthealthcare.com/fungi.html
http://www.floridagardener.com.....rhizae.asp
http://www.global-garden.com.a.....y97dte.htm
http://www.plantworksuk.co.uk/.....meset.html
http://sciweb.nybg.org/science.....rhizae.asp

What are Mycorrhizal inoculants?

http://www.the-landscape-desig.....fungi.html

GAMES

http://herbarium.usu.edu/fungi.....ctindx.htm
http://www.cbc.ca/kids/games/sushisamurai/


Last edited by adedios on Sat Jan 27, 2007 3:40 pm; edited 2 times in total
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Sat Oct 21, 2006 11:10 pm    Post subject: Discovery about evolution of fungi Reply with quote

University of Minnesota
20 October 2006

Discovery about evolution of fungi has implications for humans, says U of M researcher

As early fungi made the evolutionary journey from water to land and branched off from animals, they shed tail-like flagella that propelled them through their aquatic environment and evolved a variety of new mechanisms (including explosive volleys and fragrances) to disperse their spores and reproduce in a terrestrial setting.

"What's particularly interesting is that species retained their flagella for different lengths of time and developed different mechanisms of spore dispersal," said David McLaughlin, professor of plant biology at the University of Minnesota in the College of Biological Sciences and co-author of a paper published in the Oct. 19 issue of Nature describing how fungi adapted to life on land.

The discovery is the latest installment in an international effort to learn the origins of species. McLaughlin is one of five principal investigators leading a team of 70 researchers at 35 institutions. The group analyzed information from six key genetic regions in almost 200 contemporary species to reconstruct the earliest days of fungi and their various relations.

McLaughlin is directing the assembly of a shared database of fungal structures obtained through electron microscopy, which produces detailed images that provide clues to the diversity of these organisms. The work is funded by a $2.65 million "Assembling the Tree of Life" grant from the National Science Foundation that was awarded to Duke University, the University of Minnesota, Oregon State University and Clark University in January 2003.

The discovery provides a new glimpse into evolution of life on Earth. It will also help scientists better understand this unusual group of organisms and learn how to develop uses for their unique properties in medicine, agriculture, conservation and industry.

McLaughlin believes fungi are a valuable untapped natural resource. They play a variety of roles in nature, such as supplying plants with nutrients through mutualistic relationships and recycling dead organisms. He estimates that there are about 1.5 million species on the Earth, but only about 10 percent of those are known. And civilization has only identified uses for a few of those, such as using yeast to make bread, beer, wine, cheese and a few antibiotics.

"Understanding the relationships among fungi has many potential benefits for humans," McLaughlin said. "It provides tools to identify unknown species that may lead to new products for medicine and industry. It also helps us to manage natural areas, such as Minnesota's oak savannahs, where the fungi play important roles but are often hidden from view."

Fungi are also intriguing because their cells are surprisingly similar to human cells, McLaughlin said. In 1998 scientists discovered that fungi split from animals about 1.538 billion years ago, whereas plants split from animals about 1.547 billion years ago. This means fungi split from animals 9 million years after plants did, in which case fungi are actually more closely related to animals than to plants. The fact that fungi had motile cells propelled by flagella that are more like those in animals than those in plants, supports that.

Not all fungi are beneficial to humans. A small percent have been linked to human diseases, including life-threatening conditions. Treating these can be risky because human and fungal cells are similar. Any medicine that kills the fungus can also harm the patient. Thus knowing more about fungi helps identify new and better ways to treat serious fungal infections in humans. Fungi are also the major cause of disease in agricultural crops, so understanding them also helps track and control these plant diseases.

McLaughlin and his colleagues will continue their efforts to establish genetic relationships among fungi and to understand their roles in nature. Additional structural studies, especially of key species, are needed to determine how the organisms adapted.


###
McLaughlin is curator of fungi for the University of Minnesota Bell Museum of Natural History, past president of the national mycological society, and adviser to the state society. He has used his knowledge of fungi to identify species that may be useful to treat cancer and to preserve oak savannahs at Cedar Creek Natural History Area in central Minnesota.
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Thu Nov 09, 2006 10:58 am    Post subject: Nature's process for nitrogen fixation caught in action Reply with quote

Virginia Tech
9 November 2006

Nature's process for nitrogen fixation caught in action

Nitrogen gas is converted to ammonia fertilizer by a chemical process that involves high temperature and high pressure. Nature does the same thing at ambient temperature and pressure. The process, called nitrogen fixation, is essential to life as it provides nutrients to plant life.

A research team from Utah State University, Virginia Tech, and Northwestern University asked whether the biological process, carried out by microbes that contain the enzyme nitrogenase, follows the same pathway as recently reported chemical methods. Their research method resulted in the ability to witness steps in the biological process that enables some microorganisms to convert atmospheric nitrogen to nutrients.

The research is reported in the Proceedings of the National Academy of Science (PNAS) Special Feature Issue on Nitrogen Fixation, in the invited article, "A methyldiazene (HN=N-CH3) derived species bound to the nitrogenase active-site FeMo cofactor: Implications for mechanism," by Brett M. Barney of Utah State, Dmitriy Lukoyanov and Tran-Chin Yang of Northwestern, Dennis Dean at Virginia Tech, Brian M. Hoffman of Northwestern, and Lance C. Seefeldt of Utah State.

Dean, director of the Fralin Biotechnology Center at Virginia Tech, performed the genetics and molecular biology. The Utah Department of Chemistry and Biochemistry performed the biochemistry and the biophysics research was carried out in the Northwestern Department of Chemistry.

An enzyme is a protein that induces chemical changes in another substance. "Such reactions involve several stages in the reduction pathway," Dean said. "Nitrogenase activity is particularly complex because there are many intermediate stages between nitrogen gas (N2) and ammonia (NH3) that require adding electrons and protons."

In order to trap the process at a specific stage, the researchers synthesized a mimic of an intermediate compound in the pathway, and then followed its progress. The PNAS article talks about the challenge of identifying, trapping, synthesizing, and inserting the mimic and methods for observing the reduction of N2.

Hoffman, Dean and Seefeldt have been working for years to figure out how to trap and characterize nitrogenase intermediates. Their success was reported in the Journal of the American Chemical Society and in Chemical and Engineering News in 2005. So, does the biological process follow the same pathway as the chemical process? "Our research suggests it does not," said Dean. "Nature appears to do it differently."

###
The article appears in PNAS online early edition before publication at http://www.pnas.org/cgi/conten.....2130103v1.

Learn more about the earlier research in the simple write up by Amanda Yarnell of Chemical and Engineering News at http://pubs.acs.org/cen/news/83/i42/8342notw3.html
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Tue Dec 05, 2006 9:41 am    Post subject: Tearing down the fungal cell wall Reply with quote

Virginia Tech
5 December 2006

Tearing down the fungal cell wall

Fungal gene impacts viability of destructive pathogen
Blacksburg, Va. – Scientists at the Virginia Bioinformatics Institute and Duke University Medical Center have pinpointed a fungal gene that appears to play an important role in the development and virulence of Alternaria brassicicola. A. brassicicola, a destructive fungal pathogen that causes black spot disease on most cultivated Brassica crops worldwide, results in considerable leaf loss in many economically important crops including canola, cabbage and broccoli. Sensitivity to spores of Alternaria species is also clinically associated with human respiratory disorders such as allergy, asthma, and chronic sinusitis.

Spores, which are often termed conidia in some fungi, are an essential part of the developmental cycle of A. brassicicola and arise from the branching filaments or hyphae that make up the fungus. In the study, the investigators show that disruption of the AbNPS2 gene drastically impacts the integrity of the cell wall of fungal spores produced in the reproductive phase of A. brassicicola's life cycle. The AbNPS2 gene most likely directs the synthesis of a molecule that plays an essential role in maintaining the structure of the cell wall of the conidia.

Associate Professor Christopher Lawrence of the Virginia Bioinformatics Institute and the Department of Biological Sciences at Virginia Tech, director of the study, remarked: "Typical A. brassicicola spores are hydrophobic. Water droplets placed on a lawn of fungal hyphae bearing normal spores are repelled and easily roll off the surface. When the AbNPS2 gene is disrupted, the linkage of the outermost layer of the fungal spore cell wall to the middle layer appears to be disturbed, destroying the cell wall's regular architecture and making the spores permeable to water. This has drastic effects on the viability of the spores."

Kwang-Hyung Kim, doctoral student and the lead author on the paper, stated: "What we have been able to show is that mutation of the AbNPS2 gene is accompanied by structural changes that occur in the cell wall of the spores, a decrease in spore germination rate, lower survival rates for the spores under adverse environmental conditions, and a reduced ability of the fungus to damage the host plant. These observations may open up a route to develop new and innovative research strategies aimed at understanding the host-pathogen interaction for this destructive plant pathogen."

The investigators used a wide range of experimental approaches to look in detail at the link between the function of the gene and its impact on the structure of the spore cell wall. A recently developed gene disruption method was used to generate the fungal mutants (See "New method enables gene disruption in destructive fungal pathogen" at www.vbi.vt.edu/article/articleview/538/1/15/). Bioinformatic and gene prediction tools were applied to probe the structure and organization of the AbNPS2 gene and the surrounding region in the recently sequenced A. brassicicola genome, a collaborative project nearing completion with Washington University Genome Sequencing Center in St. Louis. Electron microscopy revealed some of the dramatic structural changes in the cell wall arising from disruption of the gene.

Dr. Nancy Keller, Professor in the Department of Plant Pathology at the University of Wisconsin, Madison and international expert in fungal secondary metabolism, commented: "The finding that a non-ribosomal peptide synthetase is integral to conidial morphology further illustrates the versatile and essential role of these secondary metabolites in fungal biology. For years long ignored, the function of natural products is rapidly becoming one of the hot topics in fungal biology; the findings reported in this study by Dr. Lawrence's research group further underline their importance."

The AbNPS2 gene encodes a large protein known as a non-ribosomal peptide synthetase. This protein directs the synthesis of secondary metabolites known as non-ribosomal peptides. However, the functions of many of these proteins and the subsequent synthesized metabolites are largely unknown. Dr. Lawrence added: "To the best of our knowledge, this is the first report that a fungal non-ribosomal peptide synthetase is associated with cell wall construction in fungal spores. The putative secondary metabolite produced by the protein encoded by this gene could serve as a physical bridge in the layers of the cell wall or function as a regulator of cell wall biosynthesis. Future work will focus on identifying the role of the product of the AbNPS2 gene which should allow us to get an important handle on the precise series of molecular events that give rise to these drastic effects on spore viability."


###
The work was funded by the National Science Foundation and the United States Department of Agriculture.

The research is available on-line at www.blackwell-synergy.com/doi/.....06.00366.x in the journal Molecular Plant Pathology. The article is entitled "Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction."

The Virginia Bioinformatics Institute (VBI) at Virginia Tech has a research platform centered on understanding the "disease triangle" of host-pathogen-environment interactions in plants, humans and other animals. By successfully channeling innovation into transdisciplinary approaches that combine information technology and biology, researchers at VBI are addressing some of today's key challenges in the biomedical, environmental and plant sciences.
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Fri Apr 06, 2007 7:01 am    Post subject: The World Rots Faster as Global Warming Fuels Fungi Reply with quote

The World Rots Faster as Global Warming Fuels Fungi

By Jeanna Bryner
LiveScience Staff Writer
posted: 05 April 2007
02:00 pm ET

Fungi are fruiting and spreading more rapidly thanks to global warming, a new study finds. The result: Things are rotting faster.

From polka-dotted mushrooms that push through cracks to slender tendrils that peak out from beneath tree barks, fungal freaks are flourishing in their balmy environment.

Compared to 50 years ago, many of the fungal species in England and possibly elsewhere now fruit much earlier in the year, and some of them even reproduce twice a year due to warmer temperatures and increased rainfall.

It is “unheard of for an organism to start reproducing twice a year instead of once,” said the study’s lead author Alan Gange of the University of London.

For the full article:

http://www.livescience.com/env.....iting.html
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Mon Apr 23, 2007 10:01 am    Post subject: Prehistoric mystery organism verified as giant fungus Reply with quote

University of Chicago
23 April 2007

Prehistoric mystery organism verified as giant fungus

'Humongous fungus' towered over all life on land
Scientists at the University of Chicago and the National Museum of Natural History in Washington, D.C., have produced new evidence to finally resolve the mysterious identity of what they regard as one of the weirdest organisms that ever lived.

Their chemical analysis indicates that the organism was a fungus, the scientists report in the May issue of the journal of Geology, published by the Geological Society of America. Called Prototaxites (pronounced pro-toe-tax-eye-tees), the organism went extinct approximately 350 million years ago.

Prototaxites has generated controversy for more than a century. Originally classified as a conifer, scientists later argued that it was instead a lichen, various types of algae or a fungus. Whatever it was, it stood in tree-like trunks more than 20 feet tall, making it the largest-known organism on land in its day.

"No matter what argument you put forth, people say, well, that’s crazy. That doesn’t make any sense," said C. Kevin Boyce, an Assistant Professor in Geophysical Sciences at Chicago. "A 20-foot-tall fungus doesn’t make any sense. Neither does a 20-foot-tall algae make any sense, but here’s the fossil."

The Geology paper adds a new line of evidence indicating that the organism is a fungus. The fungus classification first emerged in 1919, with Francis Hueber of the National Museum of Natural History in Washington, D.C., reviving the idea in 2001. His detailed studies of internal structure have provided the strongest anatomical evidence that Prototaxites is not a plant, but a fungus.

"Fran Hueber has contributed more to our understanding of Prototaxites than anyone else, living or dead," said Carol Hotton, also of the National Museum of Natural History. "He built up a convincing case based on the internal structure of the beast that it was a giant fungus, but agonized over the fact that he was never able to find a smoking gun in the form of reproductive structures that would convince the world that it was indeed a fungus," Hotton said.

Co-authoring the Geology paper with Boyce, Hotton and Hueber himself were Marilyn Fogel, George Cody and Robert Hazen of the Carnegie Institution of Washington, and Andrew Knoll of Harvard University. Their work was funded by NASA’s Astrobiology Institute and by the American Chemical Society Petroleum Fund.

Prototaxites lived worldwide from approximately 420 million to 350 million years ago. During this period, which spans part of the Silurian and Devonian periods of geologic time, terrestrial Earth looked quite alien in comparison to the modern world.

Simple vascular plants, the ancestors of the familiar conifers, ferns and flowering plants of today, began to diversify on land during the Devonian Period. "Initially, they’re just stems. They don’t have roots. They don’t have leaves. They don’t have anything like that," Boyce said.

Millipedes, wingless insects and worms were among the other organisms making a living on land by then, but no backboned animals had yet evolved out of the oceans. "That world was a very strange place," Boyce said.

Although vascular plants had established themselves on land 40 million years before the appearance of Prototaxites, the tallest among them stood no more than a couple feet high. By the end of the Devonian, approximately 345 million years ago, large trees, ferns, seeds, leaves and roots had all evolved. "They’re all there. They just exploded over this one time period," Boyce said.

Canadian paleontologist Charles Dawson published the first research on Prototaxites in 1859, based on specimens found along the shores of Gaspé Bay in Quebec, Canada. Hueber pored through Dawson’s field notebooks, written "in a completely illegible scrawl," Hotton said.

"Fran spent months deciphering them for clues about the localities where specimens had been collected, how Dawson interpreted them and other information that helped understand this humongous fungus," she said.

Hueber also traveled to Canada, Australia and Saudi Arabia to collect specimens. He tediously sliced them into hundreds of thin sections and made thousands of images taken through microscopes to determine the organism’s identity.

Now Boyce, Hotton and their colleagues have produced independent evidence that supports Hueber’s case. The team did so by analyzing two varieties—isotopes—of carbon contained in Prototaxites and the plants that lived in the same environment approximately 400 million years ago.

The metabolism of plants is limited by photosynthesis. Deriving their energy from the sun and their carbon from carbon dioxide in the air, any given type of plant will typically contain a similar ratio of carbon-12 to carbon-13 as another plant of the same type. "But if you’re an animal, you will look like whatever you eat," Boyce said. And Prototaxites displayed a much wider variation in its ratio of carbon-12 to carbon-13 content than would be expected in any plant.

Geological processes can alter the isotopic composition of fossils, but Boyce and his colleagues conducted tests to verify that the carbon isotopic composition of the specimens they analyzed stemmed from organic rather than geologic factors.

As for why these bizarre organisms grew so large, "I’ve wondered whether it enabled Prototaxites to distribute its spores widely, allowing it to occupy suitable marshy habitats that may have been patchily distributed on the landscape," Hotton said.

The relatively simple Devonian ecosystems certainly seemed to contain nothing to prevent them from growing slowly for a long time. Plant-eating animals had not yet evolved, Boyce said. But even if Prototaxites hadn’t been eaten by the dinosaurs and elephants that came much later, they probably grew too slowly to rebuild from regular disturbances of any kind, Boyce said.

"It’s hard to imagine these things surviving in the modern world," he said.
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Fri Jun 22, 2007 3:41 pm    Post subject: Modified mushrooms may yield human drugs Reply with quote

Penn State
22 June 2007

Modified mushrooms may yield human drugs

Mushrooms might serve as biofactories for the production of various beneficial human drugs, according to plant pathologists who have inserted new genes into mushrooms.

"There has always been a recognized potential of the mushroom as being a choice platform for the mass production of commercially valuable proteins," said Charles Peter Romaine, who holds the John B. Swayne Chair in spawn science and professor of plant pathology at Penn State. "Mushrooms could make the ideal vehicle for the manufacture of biopharmaceuticals to treat a broad array of human illnesses. But nobody has been able to come up with a feasible way of doing that."

Dr. Romaine and his colleague, Xi Chen, then a post-doctoral scholar at Penn State and now a Syngenta Biotechnology Inc. research scientist, have developed a technique to genetically modify Agaricus bisporus -- the button variety of mushroom, which is the predominant edible species worldwide. One application of their technology is the use of transgenic mushrooms as factories for producing therapeutic proteins, such as vaccines, monoclonal antibodies, and hormones like insulin, or commercial enzymes, such as cellulase for biofuels.

"Right now medical treatment exists for about 500 diseases and genetic disorders, but thanks to the human genome project, before long, new drugs will be available for thousands of other diseases," Dr. Romaine said. "We need a new way of mass-producing protein-based drugs, which is economical, safe, and fast. We believe mushrooms are going to be the platform of the future."

To create transgenic mushrooms, researchers attached a gene that confers resistance to hygromycin, an antibiotic, to circular pieces of bacterial DNA called plasmids, which have the ability to multiply within a bacterium known as Agrobacterium.

The hygromycin resistance gene is a marker gene to help sort out the transgenic mushroom cells from the non-transgenic cells, Dr. Romaine explained. "What we are doing is taking a gene, as for example a drug gene, that is not part of the mushroom, and camouflaging it with regulatory elements from a mushroom gene. We then patch these genetic elements in the plasmid and insert it back into the bacterium," he added.

The researchers then snipped small pieces off the mushroom's gill tissue and added it to a flask containing the altered bacterium.

Over the course of several days, as the bacterium goes through its lifecycle, it transfers a portion of its plasmid out of its cell right into the mushroom cell, and integrates the introduced gene into the chromosome of the mushroom.

Next, the researchers exposed the mushroom cells to hygromycin. The antibiotic kills all the normal cells, separating out those that have been genetically altered for resistance.

The test demonstrates that if a second gene, insulin for example, were to be patched in the plasmid, that gene would be expressed as well.

"There is a high probability that if the mushroom cell has the hygromycin resistance gene, it will also have the partner gene," Dr. Romaine added.

The degree of gene expression ultimately depends on where exactly the imported gene lands in the mushroom chromosome, among a complexity of other factors, but researchers point out that the process of producing biopharmaceuticals is potentially faster and cheaper with mushrooms than conventional technologies. Unlike plants that have long growth cycles, "with mushrooms, we can use commercial technology to convert the vegetative tissue from mushroom strains stored in the freezer into vegetative seed. A crop from which drugs may be extracted could be ready in weeks," Dr. Romaine said. A mushroom-based biofactory also would not require expensive infrastructure set up by major drug companies, he added.

###
The technology is patented by Penn State and Agariger, Inc. has an exclusive license to develop the technology. Dr. Romaine is a co-founder of the company.
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Mon Jun 25, 2007 11:37 am    Post subject: Mushrooms Used as Green Insulation Reply with quote

Mushrooms Used as Green Insulation
By Jessica M. Pasko, Associated Press

posted: 25 June 2007 09:48 am ET

TROY, N.Y. (AP) -- Eben Bayer grew up on a farm in Vermont learning the intricacies of mushroom harvesting with his father. Now the Rensselaer Polytechnic Institute graduate is using that experience to create an organic insulation made from mushrooms.

More at home on a pizza, mushrooms certainly aren't a typical building material, but Bayer thought they just might work when given the assignment two years to create a sustainable insulation.

Combining his agricultural knowledge with colleague Gavin McIntyre's interest in sustainable technology, the two created their patented "Greensulate'' formula, an organic, fire-retardant board made of water, flour, oyster mushroom spores and perlite, a mineral blend found in potting soil. They're hoping the invention will soon be part of the growing market for eco-friendly products.

For the full article:

http://www.livescience.com/env.....lding.html
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Wed Jul 18, 2007 9:34 am    Post subject: Decoding mushroom’s secrets could combat carbon, find better Reply with quote

Decoding mushroom’s secrets could combat carbon, find better biofuels & safer soils
University of Warwick
17 July 2007

Researchers at the University of Warwick are co-ordinating a global effort to sequence the genome of one of the World’s most important mushrooms - Agaricus bisporus. The secrets of its genetic make up could assist the creation of biofuels, support the effort to manage global carbon, and help remove heavy metals from contaminated soils.

The Agaricus mushroom family are highly efficient ‘secondary decomposers’ of plant material such as leaves and litter –breaking down the material that is too tough for other fungi and bacteria to handle. How exactly it does this, particularly how it degrades tough plant material known as lignin, is not fully understood. By sequencing the full genome of the mushroom, researchers hope to uncover exactly which genes are key to this process. That information will be extremely useful to scientists and engineers looking to maximize the decomposition and transformation of plant material into bio fuels.

The mushroom also forms an important model for carbon cycling studies. Carbon is sequestered in soils as plant organic matter. Between 1–2 giga tons of carbon a year are sequestered in pools on land in the temperate and boreal regions of the earth, which represents 15–30% of annual global emissions of carbon from fossil fuels and industrial activities. Understanding the carbon cycling role of these fungi in the forests and other ecosystems is a vital component of optimizing carbon management.

That however is not the end of the mushrooms talents; several Agaricus species are able to hyper-accumulate toxic metals in soils at a higher level than many other fungi. Understanding how the mushroom does this improves prospects of using such fungi for the bioremediation of contaminated soils.
Agaricus bisporus is one of the most widely cultivated mushrooms and the genome research will also benefit growers and consumers through identification of improved quality traits such as disease resistance.

The University of Warwick’s horticultural research arm Warwick HRI will co-ordinate provision of genetic materials to the Joint Genome Institute in California for sequencing, will organise analysis of the sequence data and act as curator of the mushroom genome.
Agaricus bisporus has around 35 megabases of genetic information coding for an estimated 11,000 genes. The researchers expect to have a 90% complete genome within 3 years

Note for Editors
The other partners in the international project team are: DOE Joint Genome Institute USA, University of Bristol, USDA Research at University of Wisconsin, Southeast Missouri State University, Clark University, Sylvan Inc USA, Institut für Forstbotanik der Universität Göttingen, Pacific Northwest National Laboratory, Public University of Navarre, Penn State University, Plant Research International Wageningen and Universiteit Utrecht.
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Mon Jul 30, 2007 2:21 pm    Post subject: Wider buffers are better Reply with quote

American Society of Agronomy

Wider buffers are better

When protecting wetlands from nitrogen pollution, an EPA study points to wider, vegetated borders around streams as most effective
MADISON, WI, JULY 26, 2007- Excess nitrogen caused by fertilizers, animal waste, leaf litter, sewer lines, and highways is responsible for contaminating groundwater. It can also cause human health risks when found in drinking water and oxygen depleted water bodies endangering animals that drink from them. Establishing Riparian buffers is considered a best management practice (BMP) by State and Federal resource agencies for maintaining water quality, and they may be especially critical in controlling amounts of human produced nitrogen.

Scientists at the U.S. Environmental Protection Agency collected data on the buffers along with nitrogen concentration in streams and groundwater to identify trends between nitrogen removal and buffer width, water flow path and vegetation. They found wide buffers (>50 meters) removed more nitrogen than narrow buffers (0-25 meters). Buffers of different vegetation types were equally effective but herbaceous and forest vegetation were more effective when wider. Removal of nitrogen within the water was efficient, but not related with buffer width; however removal on the water surface was related to buffer width. Nitrate nitrogen (sometimes used in fertilizer) did not differ by width, flow path or vegetation type. Results from the study are published in the July-August 2007 issue of the Journal of Environmental Quality.

The study suggested that buffer width is important for managing nitrogen in watersheds. Other factors such as soil saturation, groundwater flow paths, and subsurface chemical/organism relations are important for governing nitrogen removal in buffers. Vegetation type also may be an important factor in certain landscapes and hydrologic settings where forested buffers may prevent nitrogen in deep groundwater or contribute more organic carbon in streams. Riparian buffers of herbaceous vegetation or a mix with forest vegetation were found to be effective only when wider.

Riparian services provide numerous ecosystem services beyond nitrogen removal, and although buffer width, dimension, and vegetation type provide benefits such as stream shading and water temperature maintenance, fish and wildlife habitat, or sediment control; there may be other buffer characteristics more favorable in removing nitrogen. In any case, watershed nutrient management efforts also must include control and reduction of specific and general sources of nitrogen from atmospheric, land, and water inputs.

Research is ongoing at the U.S. Environmental Protection Agency to assess the nutrient removal capacity of riparian buffers. Because buffers are often degraded or removed due to land use change (e.g. agriculture and urbanization), there is need for further research to identify the most effective methods for restoration. This could lead to the enhanced nutrient removal and optimal riparian areas needed for restoration to have the greatest impact with minimum resources spent.


###
To learn more, view the Journal of Environmental Quality article abstract, posted as part of the continuous publication at: http://jeq.scijournals.org/cgi...../36/5/1368

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 11,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Thu Sep 13, 2007 5:30 pm    Post subject: What makes a fungus virulent? It's lipase Reply with quote

Journal of Clinical Investigation
13 September 2007

What makes a fungus virulent? It's lipase

Infection with the fungus Candida parapsilosis is a major problem for individuals in intensive care units, as well as for premature infants and immunocompromised adults. Despite this, little is known about which of its genes account for its virulence. New insight into the virulence mechanisms of C. parapsilosis has now been provided by Attila Gacserand colleagues at the Albert Einstein College of Medicine, New York, who have developed a new way to eliminate genes in C. parapsilosis.

In the study, growth in lipid-rich media of C. parapsilosis engineered to lack lipase activity was shown to be dramatically reduced compared with the growth of normal C. parapsilosis. Furthermore, the mutant fungi were more easily destroyed in vitro by macrophage cell lines and were less virulent when used to infect human cells in vitro and mice in vivo. These data have demonstrated that C. parapsilosis lipase is an important virulence factor for this pathogen and led the authors to suggest that developing drugs that target this lipase might be of therapeutic benefit to individuals who become infected with C. parapsilosis.


###
TITLE: Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence


View the PDF of this article at: https://www.the-jci.org/article.php?id=32294
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Sat Oct 06, 2007 10:04 am    Post subject: Fungus genome yielding answers to protect grains, people and Reply with quote

Purdue University


October 4, 2007

Fungus genome yielding answers to protect grains, people and animals

Why a pathogen is a pathogen may be answered as scientists study the recently mapped genetic makeup of a fungus that spawns the worst cereal grains disease known and also can produce toxins potentially fatal to people and livestock.

For the full article:

http://news.uns.purdue.edu/x/2.....arium.html
Back to top
View user's profile Send private message Visit poster's website
adedios
SuperPoster


Joined: 06 Jul 2005
Posts: 5060
Location: Angel C. de Dios

PostPosted: Wed Mar 12, 2008 11:23 am    Post subject: When Fungi and Algae Marry Reply with quote

When Fungi and Algae Marry
Emily Sohn

March 12, 2008

Lichens (li' kenz) are easy to ignore. They can be microscopically small. They don't move. And they often blend into the background. You might not even recognize one if you were staring right at it.
Chances are, though, you've come face-to-face with plenty of these crusty, leafy, or shrubby growths. Lichens live on rocks, branches, houses, even metal street signs. You can find these often colorful organisms almost everywhere—from deserts to rainforests, Antarctica to Africa. They've survived trips to outer space, and some scientists suspect there might even be lichens on Mars.

For the full article:

http://www.sciencenewsforkids......ature1.asp
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic   printer-friendly view    USAP PAETE Forum Index -> Science Lessons Forum All times are GMT - 5 Hours
Page 1 of 1

 
Jump to:  
You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group